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ABSTRACT

’ A multiple correlation coefficient is discussed to measure

the degree of association between a random variable Y and a set
<, | Sut f’

of randaom variables %{, cen Xﬁ. The coefficient is defined in

terms of a weighted Kendall's tau, suitably normalized. It is

4 directly compatible with the rank statistic approach of analyzing

linear models in a regression, prediction context. The popula-

tion parameter equals the classical multiple correlation coef-
ficient if the multivariate normal model holds but would be more
robust for departures from this model. Sowe results are given on

the consistency of the sample estimate and on a test for inde-

pendence.

Key Words: Rank statistics, linear wmodels, multiple correlation,
robust statistics
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1. INTRODUCTION

Consider a context with p + 1 random variables Y and
X=X, oy XP)'. Suppose that Y is viewed as a dependent
variable, Xl, cee s xp as independent variables and interest
is in measuring the degree of association between Y and
xl, cen Xp as is typical with a multiple correlation parameter.

The classical multiple correlation coefficient

1
of the multivariate normal model has many useful properties but

°Yv.%. ...
P

it lacks robustness (see Huber (1977)). Its sample estimate is
sengitive to outliers and heavier tailed distributions and can be
inefficient for nonnormal distributions. An alternate measure is
needed which is more robust in such situations.

One important property of OY'XI...X is that it is the
Pearson correlation between Y and a besz linear prediction of
Y from X in the sense of minimum squa?ed error. In this way
is directly related to regression concepts in

1
interpretation and methodology. This property can be retained in

Py x....X
p

defining a more robust multiple correlatiom coefficient if the
correlation measure and the linear ptedictg; are replaced by more
robust choices. This paper will explore su;h a measure using a
linear predictor based on rank estimates of regression coeffi-
cients. The measure of association used will be a weighted
Kendall's tau parameter which is directly comparable with the

rank-regression approach.
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Estimates of regression coefficients based on rank statis-
tics have been developed by many authors; in particular, see
Juredkova (1971), Jaeckel (1972), McKean and Hettmansperger
(1976, 1977) and Sievers (1983) for some of the basic properties
and results on their robustness and efficiency. The connection

between weighted Kendall's tau statistics and rank regression

TR T T e T

statistics was mentioned in Sievers (1978).
In a bivariate setting, Kendall's tau is a widely used non~

: parametric measure of association. Several useful extensions

have been discussed for multivariate settings; see Moran (1951),
Bobko (1977) and Agresti (1977). This paper will differ by
emphasizing the connection to the corresponding regression, pre-
diction problem. A natural population parameter will be used to
allow for a direct, meaningful interpretation of sample results.
The sample estimate should be highly efficient, in contrast to
earlier methods, although a stronger model is needed.

The basic measure of association treated here is a weighted

Kendall's tau. The weights will be important in keeping the cor-

relation measure directly compatible with the corresponding

regression, prediction concepts and mechodé. In the regression
problem it is known that weights should be used to avoid low ef-
ficiency; see Sievers (1978), Scholz (1977). Only in carefully i
designed experiments where nonrandom, equally spaced values for

the independent variables can be set would the weights be

’
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unnecessary, and in such situations multiple correlation issues

l are usually not importaut.
2. THE BIVARIATE CASE

This section considers the bivariate case to introduce some

ideas and motivate the main definition to follow. Consider a

T T

pair of random variables (Y, X) with a nondegenerate bivariate
distribution. .Let (Yl, Xl) and’ (Yz, X2) be independent with
the same distributions as (Y, X). A widely used nonparametric
measure of association is Kendall's tau
= E(sgn(xz-xl) sgn(Yz-Yl)), where sgn(t) = -1, 0, 1 as
t <0, =0, > 0. The value of <t is in [~1, 1]. Following by
analogy the Pearson correlation, one could take the absolute
value to obtain a multiple correlation coefficient although it is
not clear how useful this could be.
' The Rendall tau is symmetric in the role of X and Y.
; However, in the multiple correlation context the variables should
{ be treated asymmetrically, with Y and X playing the part of a
dependent and independent variable, respec;;vely. This would
relate multiple correlation concepts more d;rectly to regressiom,
prediction concepts as is familiar with the classical

Py-x X Moreover, in the regression problem it has been
‘ 1003
. j . noted in Jaeckel (1972), Scholz (1977) and Sievers (1978) that




the use of weights depending on X is needed to obtain high
efficiency in the nonparametric procedure based on Kendall's tau.
These considerations motivate a definition of a correlation

coefficient

t* = E(lxz-Xll sgn(x24x1) sgn(YZ-Yl))/E(lXZ-Xll)

= E((X,-X,) sgn(Yz-Yl))/E(lxz-Xll)s'

where in the first form, the numerator is a weighted Kendall's
tau and the denominator is a suitable norming factor. fhe use of
differences here is natural for parameters based on rank order.
It is worth noting that the product-moment correlation coeffic-
ient can also be expressed in terms of differences as

211/2.

“in

2 .

= - - - - *
p= BU(R,~X ) (Y,-¥,)) /(X% )7E(Y,-¥)) Thus t* is
between" p and Kendall's tau by replacing one of the variables

Y, -1

,7Y, by sgn(Yz-Yl).

The parameter Tt* has several desirable properties:

[t*| < 1, t* is invariant under linear transformations of the
variables, t* = (0 if X and Y are independent, <T* = 1 if
Y is a linear function of X with probability one. Also if X
and Y have a bivariate normal distribu:ioﬂ:with correlation ©
then <t* = p ., These properties will be discussed in more

detail in the multivariate case in the next sectiom.




The definition of <t* above does not lend itself readily to
an extension to higher dimensions and it is not suitable for a
multiple correlation since 7% can be negative. The following
change in the definition will allow a natural extension. Let B8

be a value of B minimizing Ed(YZ-Yl) - B(XZ—X1)|). Then define
T = E(B,(X,-X) sgn(Y,=¥ ))/EC(| B (X,-X)])

if B, #0and T=0 if B, = 0. Factoring out B, , it follows
that T = sgn(B,)T*, so there is at most a sign difference

between T and T*, Later it is shown that T is nonnegative.
3. THE MULTIVARIATE CASE

Consider random variables Y and X = (Xl, ey Xp)'.
Assume they have finite expectations, but otherwise their distri-
bution can be quite arbitrary for some of the material in this
section. Of special interest here is the model that specifies the

joint cdf of Y and X to be of the form

F(y - Béx)ﬂ(ﬁ), (3.1)
!

where F is a univariate cdf, H is a p~dimensional cdf and

. -
EO = (801, ces ’BOp) is a vector of unknown parameters. In
this model the conditional cdf of Y given X = x is
F(y -Béx). This property appears in the multivariate normal
model, but here the F 1is not assumed normal. No symmetry or

centering assumptions are made on F or H. Alternately, this

model can be expressed as




Y = §6§ + e, (3.2)

where X has cdf H, e has cdf F and X and e are

independent.

Considerations in the bivariate case lead to the following
definition of a multiple correlatiomn parameter. Let (Yl’-él)

and (Yz, 52) be independent, each having the distribution of

(Y, X). Suppose g, = (B*l’ oo B*p)' minimizes

EJ(Y,-Y)) = 8" (X=X )|} = E[|(¥, - 8'X,) - (¥, - 8'X))|] (3.3)

as a function of B . Then define a multiple correlation para-

meter by

EL] By (X, - X)) sen(¥, -Y))]
k=l

P
E (] B Koy = i) 1]

zk=l i S 1

(3.4)

E [8(X, - X)) sen(¥, - Y]

E (18 (X, = XD 1]

if 8, #0 and let t =0 if é* = 0. In the notation here

xip)', i=1, 2. Note that" (3.3) 1is a convex
In most cases of practical interest B, will be

X o= (X, .,

function of 8.

unique. For ambiguous cases 1 will be left undefined.




Note that 1 1is defined as the weighted Kendalls' tau as
modified in Section 2 for Y wvs g;g. The linear function g X
can be viewed as a best linear predictor of Y in the sense of
minimizing the variation in Y- §'X as measured by the absolute
difference of two independent copies. Recall that if z, and
z, are independent copies of a random variable =z, then
E(|z,-z,|) measures the variation in z (a Gini mean dif-
ference parameter). Being of first order, this will be less
sensitive to contamination and heavy tails in the distribution in
comparison to the square function E((zl-zz)z) = 2 var(z) used
in the classical approach. (3.3) 1is the population analog of

the dispersion function used in Sievers (1983).

Remark 3.1. Assume model (3.1). Let G denote the cdf of
the difference of two independent random variables each having

cdf F and assume G has a unique median. Then §0 is the

unique point minimizing (3.3) and

T = E(B](R,7K)) sgn(¥,~¥ ) 1/E[|B5(X,-X )]

Proof. Under model (3.1) the condicioyal distribution of

W=Y-Y given X

- = -3 1
oY X t has cdf G(w B:t). This

2 =1

distribution has a unique median of 33t since G has a unique
median by assumption and tts value is 0 from W being sym-

metrically distributed about 0. It is well-known that the




median minimizes an expected absolute deviation. Thus for each

fixed t, E[{W - a||t] is minimum if a = Byt and the result

follows. ®

Remark 3.2. If Y and X are independent, then 1 = 0.

Proof. A conditional argument as in the previous proof
shows that § = 0 minimizes (3.3), although it may not be uni
Regardless, independence implies that the numerator of 1 f&

tors and the result follows from E(sgn(Yz-Yl)) = 0 by

symmetry. "

The following remark shows an important property; that
T= 0 is equivalent to Y and X being independent in model

(3.1). The classical parameter o has this property for

YX ...X
p

1
the multivariate normal model but not, in general, for nonnormal

cases.

Remark 3.3. Assume model (3.1) holds with X having a non-

degenerate distribution. Then

T = () <m——> EO = Q <===>Y and X are independent.

Proof. Because of the form assumed for the joint c<¢df of Y

and X
Ly

ifgo-g. 1f _B_o- 0 then T = 0 by definition. It

in model (3.1), Y and X are independent if and only

remains to show that EO # 0 implies T # 0.




1 = ' - 1 g~
Assuming 90 $#0, T 20(§2-§l) has a nondegenerate dis
tribution with cdf say L(t). Let W = Y,-Y,. Under
model (3.1) the conditional cdf of W given T =r¢ is

G(w-t). The numerator of T is

E(T sgn(W)) = E[T{P(W > 0|T) - P(W < 0|T)}]
= E[T(1 - 26(-T))]
= E[T(26(T) - 1)]

= 2 E(T6(T)),

using G(t) + G(-t) = 1. Then since T is symmetrically distri-

buted about 0, this equals

2 [ el26(t) - 11dL(0).
0
The integrand is positive on the range of integration and with T
having a nondegenerate distribution the integral is positive.

Thus T # 0 as was to be shown. ¥®

Remark 3.4. 0 <t < 1.
Proof: The upper bound follows from

-~

|E@L(X,=X,) sga(¥,=Y ) < EC[Bo(X,~X,) sgnl¥,-¥ ) [)

= E(BL X=X [).
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For the lower bound, it is enough to show the numerator of =t is
nonnegative. Let W = Y)Y, and T = ﬁi(nggl). Then since g,

minimizes (3.3), wvrite

o Ty — T— g

O<E(W]) - E(w -T|) =E(W| - Iw-~-1|

b
% = [ e+ [ (u-oy+ [ (2w} + [ (-v)
' w)O w>0 w<0 W<0

t<w tsw t<w t>w

< f t+ [t + [ o o+ [ (-
w>@ w>Q w<0 Ww<0
t<w tow t<w t>w

= [ £ + [ (-&) = [ t sgn(w),

w>0 w<0 |

vhere for simplicity the differential part of the integrals was

omitted. This last expression, the numerator of T, is thus non-
negative. ©

- - . - ".
Remark 3.5, 1If Yz Yl and E*(Ez-ll) have the same

sign with probability one, then T = + 1.

= - = ¢ -
Proof. Let W Yz Y1 and T E*(EZ‘EI)' The

hypothesis implies sgn(W) = sgn(T) with probability one. Then

the numerator of 1 is E(T sgn(W)) = E(T sgn(T)) = E(|T|) which

is the denominator of v . ©®

-




The following remark shows that for the multivariate normal
model, t 1is identical to the classical multiple correlation

coefficient Py x . Thus ic would share its many useful

oo X
1 P
properties for this model.

Remark 3.6. If Y and X have a multivariate normal dis-

tribution, then Tt = OY.xl,,_xP

Proof. If Y and X have a multivariate normal distribu-
tion then model (3.1) holds with §0 being the vector of
least-squares regression coefficients. It is well-known that

Py.x X is the (Pearson) correlation coefficient of Y and
AL

Béx. This 1s the same as the Pearson correlation coefficient of

1 = - = ¢ -
the differences W Yz Yl and T B:Xz Bﬂxl' Thus W and

T have a bivariate normal distribution with zero means and cor-

relation o It is straightforward to show that

Y'Xl...Xp

E(T sgn(W)) = o 9 2/m and E(|T|) = GT'Z/TT ,

X, ...X

1"""%p

where GT is the standard deviation of T, and the results

follows. *

Remark 3.7. T is invariant under nonsingular linear

transformations of Y and X.

Proof. T depends on Y through a signed difference and it
is clear that a linear transformation of Y would have no ef-
fect. If X 1is replaced by CX, where C is a p x p non-

singular matrix, then the B8_ minimizing (3.3) changes to
g —

11
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(€)7'g,. Substituting in (3.4), (€))7} (ex) = Bix.,
i=1, 2, and no change in T would occur, L]
4. SAMPLE ESTIMATE CF T
Let (Yl’ El)’ (Yz, }_2), cee (Yn, En) be independent
replicates of (Y, X), where éi = (xil’ cee xip)" 1<i<n,

and X = (Xl, oo XP)'. Define an n x 1 vector
= (Yl, oo Yn)', an n x p matrix A = (xij)’ a parameter

vector 8. = (B )' and an error vector

0 » B

o1’ *°° Op
e= (el, ee en)'. 1f (Y,X) satisfys model (3.2), then

EO + e, (4.1)

Y=a
where the elements of e are iid with cdf F, the rows of A
are iid with cdf H and A 1is independent of e. An intercept
parameter could be added to this model but the procedures here are
based on differences and it would cancel out and have no effect.
An estimate of T can be defined in a natural way as fol-

lows. First let B = (31, oo Bp)’ be a vector that minimizes

a dispersion measure of the residuals given by

o
D(8) = ISAER A ) B Ry = 2y
i<j k=1

- - 'y - - ' 4.2
Y | (¥, - 8 2 - (Y - By, (4.2)
i<j
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Then define an estimate of 1t as

LoDy 8 (%) sen¥y-Y)

- g
P -
¥l Zk-l Bk(xjk-xik)l
i<j
(4.3)
I 8'(X,) seal¥ -v))
- 14
) Ig'(gc,_,-giﬂ
i<j

~

if 840 and T =0 if 8 = Q.

The aispersion function (4.2) is a convex, piecewise linear
function of B and as a result there will be a point attaining
the minimum, although it may not be unique. This is the same
dispersion function used in Sievers (1983) and is algebraically
equél to the dispersion function in Jaeckel (1972) and in McKean
and Hettmansperger (1976, 1977) when Wilcoxon scores are used.
These references point out that the diameter of the set of points
attaining the minimum tends to zero asymptotically. Further, é
is the rank estimate of the regression scores EO and these

references contain further results on properties of 8, computa~-

a

tional methods and more.
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The estimate ; has the following properties:
0 < ;5 1, ;' +] 1if the rank order of the fitted values AB_
is the same as the rank order of Y and ; is invariant under
nonsingular linear transformations on Yi and -Ei'

The estimate ; can be expressed in another form to view it

more explicitly as a rank statistic. First note the formula

) (X = X;,) sgn(Yy = ¥))

i<j
- = -X A
oL %, (28 - (a+1)) = 2] (X, =X )s,, (4.4)
. i
i
where S. 1is the rank of Y. among Y., ... , Y and
i i 1 n

-

Yk = Z'Xik/n. Using this, the numerator of 1 is
i

218} Xy - XS = 28'A8 = 2X'S,
k i

where § = (Sl, cer Sn)" Y -a 8 is the vector of centered

fitted values and A = (X, -~ -&) is the centered A matrix.
- ik nxp -

(Alternately the rank vector could be centered.) Writing the

,denominator of T as Z z Bk(xjk-xik) sgn(zk Bk (X. =-X..))

jk 1k
i<j k
and applying the same method gives
T=Y¥s /1S, (4.3

14
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vhere § = (Sz, cee s Sn) is the rank vector of Y.
Thus the numerator of t is cov(Y, S) and the denominator

is cov(Y, S). The covariance of Y with a permutation of the

integers (1, ... , n) is maximum when the integers are in the

-~

same order as the elements of Y, see Jaeckel (1972). Thus the

~

denominator is the maximum covariance of b4 with a rank vector.

This supports the choice of denominator in ; , verifys ;_ﬁ 1,
and shows ; =+ 1 when Y and i_ are in the same rank order.
The formula (4.5) suggests an interesting generalization to
allow arbitrary scores instead of ranks. Simply replace the rank
vectors § and é. by the corresponding permutations of a vector
of nondecreasing scores (al, cee an). It appears that such a

statistic would have the same properties as 1t . This will be

discussed in a subsequent paper.

-~

5. CONSISTENCY OF <

-~

In this section <t is shown to be a consistent estimate of <t
under model (4.1) with some additional regularity couditions:
(Cl) The cdf F has an absolutely continuous density function

f with f(f'/f)zf dx < = "
(C2) The difference of two independent random variables with

cdfs F has cdf G and density function g which is

continuous at zero, g(0) > O,
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(C3) The random vector X has a positive definite variance-
covariance matrix I,
(C4) There exists a positive & such that

2+8 <

E[(X-1)'(X-1)] © , where M = E(X).

Some additional notation will be needed for the proofs of
. . . - v _ @ _
this section. Define Tk(g) = z (Xjk xik) sgn[Yj A 8 (_}gj §i)]

1<j

and let T(B) = (Tl(i), cee Tp(_ﬁ_))'. Also let

LE) = T 1B x| Letr 4 = (r2pn Y2 £ 7lego), where

i<j
v= [ 2,

LEMMA 5.1. Assume model (4.1) and conditions Cl - Ca.
Then if EO =0,

(0) 2 N(a, (1/3)I),

(i) n 0
(ii) é-ﬁ*—?-»g, where é_-/n_é_, and
(1i1) & 2 w0, (/12vd .
Note that when EO holds, /;(é - EO) has the same distribution
as 4 when 8, = 0 and thus the limiting distribution of A

(iidi).

Proof. The above results were given in Sievers (1983) for

the case of nonrandom xij. The assumptions Al-A8 of that

-

paper will hold almost everywhere in the present context if




max X, -X |/fa — 0 ae. , for 1 <{k<p, and
l_<_i_<_n
(1/n)A'A —m™ I a.e. a8 n > ». But these follow from conditions
——c -

C3 and C4 and Lemma 4.1 of Ghosh and Sen (1971). ]

THEOREM 5.1. Assume model (4.1) and conditions Cl-C4.

Then 1t — .

a

Proof: First consider the case go $+ 0. Express T in the

form
T o= (@' T(0) /M) /(LGB /M), (5.1)
where M = (2). Similarly write

ERCIRRICIRIVCION

where u_*(go) is a p x 1 vector with kth element
E[(X), =X, ) s8nlY,=¥,)] and w(@,) = E[[84(X,-X)]].

a

From Lemma 4.1, it follows that B_L é-O The vector
T(0)/M is a vector of U-statistics which converges in probability
to u_*(fio) by the usual theory. For the denominator of (5.1),
note that (L(é_) - L(EO))/M-B"’ 0 since 1.: is bounded above in

absolute value by  max IBk - BOkl szi<.|x.k -Xikl/M and the
1<k<p 3%

latter converges to zero in probability. But L(-B—O)/M is a

U-statistic converging in probability to U(Eo). It follows that

t £, ¢ in case 3_01'2.




18

Now consider the case EO = 0. The above argument does not

apply since both numerator and denominator of T tend to zero

~

and it is necessary to deal with the rates of convergence. First

express (5.1) in terms of _;_- /o8 as

T = (A'T(0) /M) /(L(A) /M) . (5.2)

-

From Lemma 5.1 (iii), 4 is Op(l) and, as above,
T(0) /M N u*(0) = 0. Thus T £, 0 if it is shown tnat the

denominator of (5.2) is bounded away from zero in probability.

To show this let G, = {a € RP: I1all > 6} for &> 0,

where RP is p-dimensional Euclidean space and ||-|| the usual dis-

tance. Let the boundary be & = {a e RP:HAH-G}. By Lemma
5.1 (iii), P(A ¢ G'G) can be made arbitrarily close to one for
all n sufficiently large by taking & sufficiently small. Now

for any fixed X, ..., , L(3) is nonnegative, convex,

X
-n
L(0) = 0 and so for any A' € G'G there exists A € @; such that

L(&) < L(A'). Thus if A € Gy, L(A)/M > inf L(&)/M and

se o

it will be sufficient to show the latter is pounded away from

zero in probability.
To accomplish this a compactification argument can be used.
B, is a compact set. For any 4, &' ¢ ®, it can be shown

that |L(a) - L(A")|/M < || 4 -4'||V, where V = [/M

x Zici X Rin

converges in probability. Also L(4)/M —g-m(_A_) for any fixed
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point A and therefore uniformly for any finite set of points 3.

Finally, use the fact that ian €@ p(d) > 0, since u(d) is
8 % -

nonnegative, convex, H(0) =0 and wu(d) =0 for some 4 %0

would contradict the assumption of a positive definite I

matrix. . .
6. A TEST OF INDEPENDENCE

In this section a test of the hypothesis of independence is
considered for model (4.1). 1In view of Remark 3.3, this is the
hypothesis Hy: T = 0 (or EO = 0). The test will be based on

the numerator of T , viewing its denominator as basically a

-

norming factor. The distribution theory for the numerator of T

is readily available from the results of Section 5.

From (4.3) and (4.4), the numerator of T is B'T(0) =2 Y'S,

where Y = A B is the centered vector of fitted values and § is
the rank vector of Y. The proposed test of the hypothesis

. ) . 2
HO: T =0V vs HI: T >0 1s to reject HO if Q> Xa,p’
Q = (12Y/n) Y'S, Y is a consistent estimate of Y = ffz (see

where

McKean and Hettmansperger (1976, 1977), Sievers and McKean
2 L
(1983)) and Xa,p is the quantile of order 1 - a of a chi-

square distribution with p degrees of freedom.

THEOREM 6.1. Assume model (4.1) and conditions Cl-C4.
Then under Byy Q has a8 limiting chi-square distribution with p

degrees of freedom.
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-

Proof. 1t is sufficient to replace Yy by vy and consider,

with notation from Section 5,

2

“3/220)1 = 12v é'_E_A*. (6.1)

(12v/n) §'s = 6 vA'[n

Using Lemma 5.1, this has the same limiting distribution as
122 A'28, which is x2(p). ®

McKean and Hettmansperger (1976, 1977) have proposed a test
of the equivalent hypothesis Ho: EO = 0 based on a drop in
dispersion for the case of fixed xij. In the notation here, this
statistic is (12¢/n)(D(2) - D(é)), where D is given in (4.2).
The asymptotics of Section S5 can be used to show this statistic
is asymptotically equivalent to Q and in this sense there is
agreement between the tests of T = 0 and EO = 0. Another test
statistic, asymptotically equivalent to Q, arises by replacing
é_ by éf in (6.1), namely 3n-3IKQ)'£flEﬂ2). This statistic
has the advantage of not requiring an estimate of the scale para-

meter Y.

— -
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